Thursday 26 September 2019

Autocorrelação do modelo médio móvel


Passos na escolha de um modelo de previsão Seu modelo de previsão deve incluir recursos que capturam todas as propriedades qualitativas importantes dos dados: padrões de variação no nível e tendência, efeitos da inflação e sazonalidade, correlações entre variáveis, etc. Além disso, os pressupostos subjacentes à sua O modelo escolhido deve concordar com sua intuição sobre como a série provavelmente se comportará no futuro. Ao montar um modelo de previsão, você possui algumas das seguintes opções: estas opções são descritas brevemente abaixo. Consulte o Diagrama de fluxo de previsão para uma visão gráfica do processo de especificação do modelo e consulte o painel Especificação do modelo Statgraphics para ver como os recursos do modelo são selecionados no software. Desflorestação Se a série mostra crescimento inflacionário, a deflação ajudará a explicar o padrão de crescimento e reduzir a heteroscedasticidade nos resíduos. Você pode (i) desinflar os dados passados ​​e reinflar as previsões de longo prazo a uma taxa assumida constante, ou (ii) desinflar os dados passados ​​por um índice de preços como o CPI e, em seguida, quotmanually reintroduzir as previsões de longo prazo usando Uma previsão do índice de preços. A opção (i) é a mais fácil. No Excel, você pode simplesmente criar uma coluna de fórmulas para dividir os valores originais pelos fatores apropriados. Por exemplo, se os dados forem mensais e você deseja desinflar a uma taxa de 5 por 12 meses, você dividiria por um fator de (1.05) (k12) onde k é o índice de linha (número de observação). RegressIt e Statgraphics têm ferramentas integradas que fazem isso automaticamente para você. Se você for esta rota, geralmente é melhor definir a taxa de inflação assumida igual à sua melhor estimativa da taxa atual, especialmente se você estiver prevendo mais de um período à frente. Se em vez disso você escolher a opção (ii), primeiro você deve salvar as previsões deflacionadas e os limites de confiança para a planilha de dados, gerar e salvar uma previsão do índice de preços e, finalmente, multiplicar as colunas apropriadas. (Voltar ao topo da página.) Transformação do logaritmo Se a série mostra o crescimento do composto ou um padrão sazonal multiplicativo, uma transformação de logaritmo pode ser útil além do ou defasagem da deflação. O registro dos dados não irá alisar um padrão de crescimento inflacionário, mas ele irá corrigi-lo para que ele possa ser ajustado por um modelo linear (por exemplo, uma caminhada aleatória ou modelo ARIMA com crescimento constante ou um modelo linear de suavização exponencial). Além disso, o log converterá padrões sazonais multiplicativos em padrões aditivos, de modo que, se você efetuar um ajuste sazonal após o registro, você deve usar o tipo de aditivo. Logging lida com a inflação de forma implícita, se você deseja que a inflação seja modelada explicitamente - ou seja. Se você quiser que a taxa de inflação seja um parâmetro visível do modelo ou se você quiser visualizar parcelas de dados desinflados - então você deve desinflar em vez de registrar. Outro uso importante para a transformação de log é linearizar relações entre variáveis ​​em um modo de regressão l. Por exemplo, se a variável dependente é uma função multiplicativa em vez de aditiva das variáveis ​​independentes, ou se a relação entre variáveis ​​dependentes e independentes é linear em termos de mudanças percentuais em vez de mudanças absolutas, então, aplicando uma transformação de log a uma ou mais variáveis Pode ser apropriado, como no exemplo da venda de cerveja. (Voltar ao topo da página.) Ajuste sazonal Se a série tiver um padrão sazonal forte que se acredita ser constante de ano para ano, o ajuste sazonal pode ser uma maneira apropriada de estimar e extrapolar o padrão. A vantagem do ajuste sazonal é que ele modela o padrão sazonal explicitamente, dando-lhe a opção de estudar os índices sazonais e os dados dessazonalizados. A desvantagem é que requer a estimativa de um grande número de parâmetros adicionais (particularmente para dados mensais) e não fornece nenhum raciocínio teórico para o cálculo de intervalos de confiança de quotcorrectquot. A validação fora da amostra é especialmente importante para reduzir o risco de sobreposição dos dados passados ​​através do ajuste sazonal. Se os dados são fortemente sazonais, mas você não escolhe o ajuste sazonal, as alternativas são para (i) usar um modelo ARIMA sazonal. Que, implicitamente, prevê o padrão sazonal com atrasos e diferenças sazonais, ou (ii) usa o modelo de suavização exponencial sazonal de Invernos, que estima índices sazonais variáveis ​​no tempo. (Voltar ao topo da página.) Quot Variáveis ​​independentes Se existem outras séries temporais que você acredita ter poder explicativo em relação à sua série de interesse (por exemplo, indicadores econômicos líderes ou variáveis ​​de política, como preço, publicidade, promoções, etc.) você Pode considerar a regressão como seu tipo de modelo. Se você escolhe ou não a regressão, você ainda precisa considerar as possibilidades mencionadas acima para transformar suas variáveis ​​(deflação, registro, ajuste sazonal e talvez também diferenciação) para explorar a dimensão do tempo e linearizar os relacionamentos. Mesmo que você não escolha a regressão neste ponto, você pode considerar adicionar regressores mais tarde a um modelo de séries temporais (por exemplo, um modelo ARIMA) se os resíduos acabarem por ter correlações cruzadas significativas com outras variáveis. (Retornar ao topo da página.) Caminho de suavização, média ou aleatória Se você escolheu ajustar os dados de forma sazonal - ou se os dados não são sazonais para começar -, então você pode querer usar um modelo de média ou suavização para Ajustar o padrão não-sazonal que permanece nos dados neste momento. Um modelo simples de movimentação simples ou simples de suavização meramente calcula uma média local de dados no final da série, assumindo que esta é a melhor estimativa do valor médio atual em torno do qual os dados estão flutuando. (Estes modelos assumem que a média da série está variando lentamente e aleatoriamente sem tendências persistentes.) O alisamento exponencial simples é normalmente preferido para uma média móvel simples, porque sua média ponderada exponencialmente faz um trabalho mais sensato de descontar os dados mais antigos, porque é O parâmetro de alisamento (alfa) é contínuo e pode ser prontamente otimizado, e porque tem uma base teórica subjacente para computar intervalos de confiança. Se o alisamento ou a média não parece ser útil - ou seja. Se o melhor preditor do próximo valor da série temporal é simplesmente seu valor anterior - então, um modelo de caminhada aleatória é indicado. Este é o caso, por exemplo, se o número ótimo de termos na média móvel simples for 1, ou se o valor ótimo de alfa no alisamento exponencial simples for 0.9999. O alisamento exponencial linear de Browns pode ser usado para caber uma série com tendências lineares que variam lentamente, mas seja cauteloso sobre extrapolar essas tendências muito para o futuro. (Os intervalos de confiança que aumentam rapidamente para este modelo testemunham a sua incerteza sobre o futuro distante.) O suavização linear de Holts também estima tendências variáveis ​​no tempo, mas usa parâmetros separados para suavizar o nível e a tendência, o que geralmente proporciona um ajuste melhor aos dados Do que o modelo Brown8217s. As tentativas de suavização exponencial uadratic tentam estimar as tendências quadráticas variáveis ​​no tempo e nunca devem ser usadas praticamente. (Isso corresponderia a um modelo ARIMA com três ordens de diferenciação não-sazonal.) O alívio linear exponencial com uma tendência amortecida (ou seja, uma tendência que se aplana em horizontes distantes) é muitas vezes recomendado em situações em que o futuro é muito incerto. Os vários modelos de suavização exponencial são casos especiais de modelos ARIMA (descritos abaixo) e podem ser equipados com o software ARIMA. Em particular, o modelo de suavização exponencial simples é um modelo ARIMA (0,1,1), o modelo de suavização linear Holt8217s é um modelo ARIMA (0,2,2) e o modelo de tendência amortecida é um ARIMA (1,1,2 ) modelo. Um bom resumo das equações dos vários modelos de suavização exponencial pode ser encontrado nesta página no site da SAS. (Os menus do SAS para especificar modelos de séries temporais também são mostrados lá). Eles são semelhantes aos de Statgraphics.) Os modelos de linha de tendência linear, quadrática ou exponencial são outras opções para extrapolar uma série dessazonalizada, mas eles raramente superam a caminhada, alisamento ou Modelos ARIMA sobre dados empresariais. (Retornar ao topo da página.) Winters Seasonal Exponential Smoothing Winters Seasonal Smoothing é uma extensão do alisamento exponencial que, simultaneamente, calcula fatores de variação do tempo, tendência e sazonal usando equações recursivas. (Assim, se você usar este modelo, você não ajustaria os dados sazonalmente pela primeira vez). Os fatores sazonais de Invernos podem ser multiplicativos ou aditivos: normalmente você deve escolher a opção multiplicativa, a menos que tenha registrado os dados. Embora o modelo Winters seja inteligente e razoavelmente intuitivo, pode ser complicado aplicar na prática: possui três parâmetros de alisamento - alfa, beta e gama - para alisar separadamente os fatores de nível, tendência e sazonal, que devem ser estimados simultaneamente. A determinação dos valores iniciais para os índices sazonais pode ser feita aplicando o método médio-a-móvel de ajuste sazonal em parte ou em toda a série e em backforecast. O algoritmo de estimativa que Statgraphics usa para esses parâmetros às vezes não converge e produz valores que dão previsões e intervalos de confiança de busca estranha, então eu recomendaria cautela ao usar este modelo. (Voltar ao topo da página.) ARIMA Se você não escolhe o ajuste sazonal (ou se os dados não são sazonais), você pode querer usar a estrutura modelo ARIMA. Os modelos ARIMA são uma classe muito geral de modelos que inclui modos de caminhada aleatória, tendência aleatória, suavização exponencial e autoregressiva como casos especiais. A sabedoria convencional é que uma série é um bom candidato para um modelo ARIMA se (i) pode ser estacionada por uma combinação de diferentes transformações matemáticas, como o log, e (ii) você possui uma quantidade substancial de dados para trabalhar com : Pelo menos 4 temporadas completas no caso de dados sazonais. (Se a série não puder ser adequadamente estacionada por diferenciação - por exemplo, se for muito irregular ou parece estar alterando qualitativamente o seu comportamento ao longo do tempo - ou se tiver menos de 4 estações de dados, você pode estar melhor com um modelo Que usa o ajuste sazonal e algum tipo de média ou suavização simples). Os modelos ARIMA possuem uma convenção de nomeação especial introduzida pela Box e Jenkins. Um modelo ARIMA não sazonal é classificado como um modelo ARIMA (p, d, q), onde d é o número de diferenças não-sazonais, p é o número de termos autorregressivos (atrasos da série diferenciada) e q é o número de diferenças de movimento, Termos médios (atrasos dos erros de previsão) na equação de predição. Um modelo ARIMA sazonal é classificado como ARIMA (p, d, q) x (P, D, Q). Onde D, P e Q são, respectivamente, o número de diferenças sazonais, termos autorregressivos sazonais (atrasos da série diferenciada em múltiplos do período sazonal) e termos médios móveis sazonais (atrasos dos erros de previsão em múltiplos da temporada período). O primeiro passo na montagem de um modelo ARIMA é determinar a ordem apropriada de diferenciação necessária para estacionar a série e remover as características brutas da sazonalidade. Isso equivale a determinar qual quotnaivequot random-walk ou modelo de tendência aleatória fornece o melhor ponto de partida. Não tente usar mais de 2 ordens totais de diferenciação (não sazonal e sazonal combinada) e não use mais de 1 diferença sazonal. O segundo passo é determinar se deve incluir um termo constante no modelo: geralmente você inclui um termo constante se a ordem total de diferenciação for 1 ou menos, caso contrário você não. Em um modelo com uma ordem de diferenciação, o termo constante representa a tendência média nas previsões. Em um modelo com duas ordens de diferenciação, a tendência nas previsões é determinada pela tendência local observada no final da série temporal, e o termo constante representa a tendência da tendência, ou seja, a curvatura do longo prazo, Previsões de longo prazo. Normalmente, é perigoso extrapolar tendências de tendências, então você suprime o termo contant no presente caso. O terceiro passo é escolher o número de parâmetros de média autorregressiva e móvel (p, d, q, P, D, Q) que são necessários para eliminar qualquer autocorrelação que permaneça nos resíduos do modelo ingênuo (ou seja, qualquer correlação que permaneça após Mera diferenciação). Esses números determinam o número de atrasos da série diferenciada e os atrasos dos erros de previsão incluídos na equação de previsão. Se não houver autocorrelação significativa nos resíduos neste ponto, então STOP, você está pronto: o melhor modelo é um modelo ingênuo Se houver autocorrelação significativa nos intervalos 1 ou 2, você deve tentar configurar q1 se uma das seguintes se aplica: ( I) existe uma diferença não sazonal no modelo, (ii) a autocorrelação de lag 1 é negativa. Andor (iii) o gráfico de autocorrelação residual é mais limpo (menos picos mais isolados) do que o gráfico residual de autocorrelação parcial. Se não houver diferença não sazonal no modelo e ou a autocorrelação de lag 1 é positiva e ou a parcela de autocorrelação parcial residual parece mais limpa, então tente p1. (Às vezes, essas regras para escolher entre p1 e q1 conflitam entre si, caso em que provavelmente não faz muita diferença qual o que você usa. Experimente as duas e compare.) Se houver autocorrelação no intervalo 2 que não é removido pela configuração p1 Ou q1, você pode tentar p2 ou q2, ou ocasionalmente p1 e q1. Mais raramente, você pode encontrar situações em que p2 ou 3 e q1, ou vice-versa, produz os melhores resultados. É altamente recomendável que você não use pgt1 e qgt1 no mesmo modelo. Em geral, ao montar os modelos ARIMA, você deve evitar aumentar a complexidade do modelo para obter apenas pequenas melhorias adicionais nas estatísticas de erro ou a aparência das parcelas ACF e PACF. Além disso, em um modelo com pgt1 e qgt1, existe uma boa possibilidade de redundância e não-singularidade entre os lados AR e MA do modelo, conforme explicado nas notas sobre a estrutura matemática do modelo ARIMA s. Geralmente, é melhor prosseguir em um sentido inverso passo a passo em vez de retroceder passo a passo ao ajustar as especificações do modelo: comece com modelos mais simples e apenas adicione mais termos se houver uma necessidade clara. As mesmas regras aplicam-se ao número de termos autorregressivos sazonais (P) e ao número de termos de média móvel sazonal (Q) em relação à autocorrelação no período sazonal (por exemplo, atraso 12 para dados mensais). Experimente o Q1 se já houver uma diferença sazonal no modelo e ou a autocorrelação sazonal for negativa ou a parcela de autocorrelação residual parece mais limpa na proximidade do intervalo sazonal, caso contrário tente P1. (Se é lógico que a série exiba uma sazonalidade forte, então você deve usar uma diferença sazonal, caso contrário, o padrão sazonal desaparecerá ao fazer previsões de longo prazo.) Ocasionalmente, você pode querer tentar P2 e Q0 ou vice v ersa, Ou PQ1. No entanto, é altamente recomendável que o PQ nunca seja superior a 2. Os padrões sazonais raramente têm o tipo de regularidade perfeita durante um período bastante grande de estações que permitiria identificar e estimar de forma confiável muitos parâmetros. Além disso, o algoritmo de backforecast que é usado na estimação de parâmetros provavelmente produzirá resultados não confiáveis ​​(ou mesmo loucos) quando o número de estações de dados não for significativamente maior que o PDQ. Eu recomendaria nada menos do que as estações completas do PDQ2, e mais é melhor. Novamente, ao montar os modelos ARIMA, você deve ter o cuidado de evitar a sobreposição dos dados, apesar do fato de que ele pode se divertir uma vez que você obtém o jeito. Casos especiais importantes: como mencionado acima, um modelo ARIMA (0,1,1) sem constante é idêntico a um modelo de suavização exponencial simples, e assume um nível flutuante (ou seja, não há reversão média), mas com tendência zero a longo prazo. Um modelo ARIMA (0,1,1) com constante é um modelo de suavização exponencial simples com um termo de tendência linear não-zero incluído. Um modelo ARIMA (0,2,1) ou (0,2,2) sem constante é um modelo linear de suavização exponencial que permite uma tendência variável no tempo. Um modelo ARIMA (1,1,2) sem constante é um modelo de alisamento exponencial linear com tendência amortecida, ou seja, uma tendência que eventualmente se aplana em previsões de longo prazo. Os modelos ARIMA sazonais mais comuns são o modelo ARIMA (0,1,1) x (0,1,1) sem constante eo modelo ARIMA (1,0,1) x (0,1,1) com constante. O primeiro desses modelos basicamente aplica alisamento exponencial tanto para os componentes não sazonais quanto sazonais do padrão nos dados, enquanto permite uma tendência variável no tempo e o último modelo é um pouco semelhante, mas assume uma tendência linear constante e, portanto, um pouco mais longo - previsibilidade do tempo. Você deve sempre incluir esses dois modelos entre a sua formação de suspeitos ao ajustar dados com padrões sazonais consistentes. Um deles (talvez com uma variação menor, como aumento de p ou q em 1 e ou configuração P1, bem como Q1) é bastante frequente o melhor. (Voltar ao topo da página.) Introdução ao ARIMA: modelos não-sazonais Equação de previsão ARIMA (p, d, q): os modelos ARIMA são, em teoria, a classe mais geral de modelos para previsão de uma série temporal que pode ser feita para ser 8220sestacionalizada8221 Por diferenciação (se necessário), talvez em conjunção com transformações não-lineares, como registro ou desinflação (se necessário). Uma variável aleatória que é uma série temporal é estacionária se suas propriedades estatísticas são todas constantes ao longo do tempo. Uma série estacionária não tem tendência, suas variações em torno de sua média têm uma amplitude constante, e ela muda de forma consistente. Isto é, seus padrões de tempo aleatório de curto prazo sempre parecem os mesmos em um sentido estatístico. A última condição significa que suas autocorrelações (correlações com seus próprios desvios anteriores da média) permanecem constantes ao longo do tempo, ou de forma equivalente, que seu espectro de potência permanece constante ao longo do tempo. Uma variável aleatória deste formulário pode ser visualizada (como de costume) como uma combinação de sinal e ruído, e o sinal (se um é aparente) pode ser um padrão de reversão média rápida ou lenta, ou oscilação sinusoidal, ou alternância rápida no signo , E também poderia ter um componente sazonal. Um modelo ARIMA pode ser visto como um 8220filter8221 que tenta separar o sinal do ruído, e o sinal é então extrapolado para o futuro para obter previsões. A equação de previsão ARIMA para uma série de tempo estacionária é uma equação linear (ou seja, regressão) em que os preditores consistem em atrasos da variável dependente ou atrasos dos erros de previsão. Isto é: valor previsto de Y uma constante ou uma soma ponderada de um ou mais valores recentes de Y e uma soma ponderada de um ou mais valores recentes dos erros. Se os preditores consistem apenas em valores atrasados ​​de Y. é um modelo autoregressivo puro (8220 self-regressed8221), que é apenas um caso especial de um modelo de regressão e que poderia ser equipado com um software de regressão padrão. Por exemplo, um modelo autoregressivo de primeira ordem (8220AR (1) 8221) para Y é um modelo de regressão simples no qual a variável independente é apenas Y rezagada por um período (LAG (Y, 1) em Statgraphics ou YLAG1 em RegressIt). Se alguns dos preditores são atrasos nos erros, um modelo ARIMA não é um modelo de regressão linear, porque não existe nenhuma maneira de especificar o erro 8222 do último erro82221 como uma variável independente: os erros devem ser computados numa base de período a período Quando o modelo é ajustado para os dados. Do ponto de vista técnico, o problema com o uso de erros atrasados ​​como preditores é que as previsões do modelo8217s não são funções lineares dos coeficientes. Mesmo que sejam funções lineares dos dados passados. Assim, os coeficientes nos modelos ARIMA que incluem erros atrasados ​​devem ser estimados por métodos de otimização não-linear (8220hill-climbing8221) ao invés de apenas resolver um sistema de equações. O acrônimo ARIMA significa Auto-Regressive Integrated Moving Average. Lags da série estacionada na equação de previsão são chamados quota de termos degressivos, os atrasos dos erros de previsão são chamados quotmoving termos de média, e uma série de tempo que precisa ser diferenciada para ser estacionada é uma versão quotintegratedquot de uma série estacionária. Modelos de caminhada aleatória e tendência aleatória, modelos autoregressivos e modelos de suavização exponencial são todos os casos especiais de modelos ARIMA. Um modelo ARIMA não-sazonal é classificado como um quot de quotARIMA (p, d, q), onde: p é o número de termos autorregressivos, d é o número de diferenças não-sazonais necessárias para a estacionaridade e q é o número de erros de previsão atrasados ​​em A equação de predição. A equação de previsão é construída da seguinte forma. Primeiro, digamos a d ª diferença de Y. o que significa: Observe que a segunda diferença de Y (o caso d2) não é a diferença de 2 períodos atrás. Em vez disso, é a primeira diferença de primeira diferença. Que é o análogo discreto de uma segunda derivada, isto é, a aceleração local da série em vez da sua tendência local. Em termos de y. A equação geral de previsão é: Aqui, os parâmetros de média móvel (9528217s) são definidos de modo que seus sinais são negativos na equação, seguindo a convenção introduzida por Box e Jenkins. Alguns autores e software (incluindo a linguagem de programação R) os definem para que eles tenham sinais de mais. Quando os números reais estão conectados à equação, não há ambigüidade, mas é importante saber qual a convenção que seu software usa quando você está lendo a saída. Muitas vezes, os parâmetros são indicados por AR (1), AR (2), 8230 e MA (1), MA (2), 8230 etc. Para identificar o modelo ARIMA apropriado para Y. você começa por determinar a ordem de diferenciação (D) necessidade de estacionar a série e remover as características brutas da sazonalidade, talvez em conjunto com uma transformação estabilizadora de variância, como o registro ou a desinflação. Se você parar neste ponto e prever que a série diferenciada é constante, você ajustou apenas uma caminhada aleatória ou modelo de tendência aleatória. No entanto, a série estacionada ainda pode ter erros autocorrelacionados, sugerindo que alguns números de AR (p 8805 1) e outros números de MA de número (q 8805 1) também são necessários na equação de previsão. O processo de determinação dos valores de p, d e q que são melhores para uma determinada série de tempo será discutido em seções posteriores das notas (cujos links estão no topo desta página), mas uma visualização de alguns tipos Os modelos ARIMA não-sazonais que são comumente encontrados são dados abaixo. Modelo autoregressivo de primeira ordem ARIMA (1,0,0): se a série estiver estacionada e autocorrelada, talvez ela possa ser predita como um múltiplo de seu próprio valor anterior, além de uma constante. A equação de previsão neste caso é 8230, que é regredida por si mesmo atrasada por um período. Este é um modelo 8220ARIMA (1,0,0) constante8221. Se a média de Y for zero, então o termo constante não seria incluído. Se o coeficiente de inclinação 981 1 for positivo e menor que 1 em magnitude (deve ser inferior a 1 em magnitude se Y estiver estacionário), o modelo descreve o comportamento de reversão média em que o valor do período 8217 seguinte deve ser previsto 981 1 vezes como Muito longe da média, já que esse valor do período é de $ 127. Se 981 1 for negativo, ele prevê um comportamento de reversão média com alternância de sinais, ou seja, ele também prevê que Y estará abaixo do período médio seguinte se estiver acima da média desse período. Em um modelo autoregressivo de segunda ordem (ARIMA (2,0,0)), haveria um termo Y t-2 também à direita e assim por diante. Dependendo dos sinais e das magnitudes dos coeficientes, um modelo ARIMA (2,0,0) pode descrever um sistema cuja reversão média ocorre de forma sinusoidalmente oscilante, como o movimento de uma massa em uma mola sujeita a choques aleatórios . ARIMA (0,1,0) caminhada aleatória: se a série Y não estiver estacionária, o modelo mais simples possível para ele é um modelo de caminhada aleatória, que pode ser considerado como um caso limitante de um modelo AR (1) no qual o autorregressivo O coeficiente é igual a 1, ou seja, uma série com reversão média infinitamente lenta. A equação de predição para este modelo pode ser escrita como: onde o termo constante é a mudança média do período para o período (ou seja, a derivação de longo prazo) em Y. Esse modelo poderia ser ajustado como um modelo de regressão sem intercepção em que o A primeira diferença de Y é a variável dependente. Uma vez que inclui (apenas) uma diferença não-sazonal e um termo constante, ela é classificada como um modelo quotARIMA (0,1,0) com constante. quot O modelo random-walk-without-drift seria um ARIMA (0,1, 0) modelo sem modelo ARADA constante (1,1,0) diferenciado do modelo autoregressivo de primeira ordem: se os erros de um modelo de caminhada aleatória forem autocorrelacionados, talvez o problema possa ser corrigido adicionando um atraso da variável dependente à equação de predição - - é Regressando a primeira diferença de Y em si mesma atrasada por um período. Isso produziria a seguinte equação de predição: que pode ser rearranjada para Este é um modelo autoregressivo de primeira ordem com uma ordem de diferenciação não-sazonal e um termo constante - ou seja. Um modelo ARIMA (1,1,0). ARIMA (0,1,1) sem alisamento exponencial simples constante: Outra estratégia para corrigir erros autocorrelacionados em um modelo de caminhada aleatória é sugerida pelo modelo de suavização exponencial simples. Lembre-se de que, para algumas séries temporais não estacionárias (por exemplo, que exibem flutuações ruidosas em torno de uma média variando lentamente), o modelo de caminhada aleatória não funciona, bem como uma média móvel de valores passados. Em outras palavras, ao invés de tomar a observação mais recente como a previsão da próxima observação, é melhor usar uma média das últimas observações para filtrar o ruído e, com mais precisão, estimar a média local. O modelo de suavização exponencial simples usa uma média móvel ponderada exponencialmente de valores passados ​​para alcançar esse efeito. A equação de predição para o modelo de suavização exponencial simples pode ser escrita em várias formas matematicamente equivalentes. Um dos quais é o chamado formulário 8220error correction8221, no qual a previsão anterior é ajustada na direção do erro que ele fez: porque e t-1 Y t-1 - 374 t-1 por definição, isso pode ser reescrito como : Que é uma equação de previsão ARIMA (0,1,1) sem constante constante com 952 1 1 - 945. Isso significa que você pode ajustar um alisamento exponencial simples especificando-o como um modelo ARIMA (0,1,1) sem Constante e o coeficiente estimado de MA (1) corresponde a 1-menos-alfa na fórmula SES. Lembre-se que, no modelo SES, a idade média dos dados nas previsões de 1 período anterior é de 1 945, o que significa que tenderão a atrasar as tendências ou os pontos de viragem em cerca de 1 945 períodos. Segue-se que a idade média dos dados nas previsões de 1 período de um ARIMA (0,1,1) - sem modelo constante é 1 (1 - 952 1). Assim, por exemplo, se 952 1 0.8, a idade média é 5. Como 952 1 aborda 1, o modelo ARIMA (0,1,1) sem modelo constante torna-se uma média móvel de muito longo prazo e, como 952 1 Aproxima-se de 0, torna-se um modelo de caminhada aleatória sem drift. O que é a melhor maneira de corrigir a autocorrelação: adicionar termos AR ou adicionar termos MA Nos dois modelos anteriores discutidos acima, o problema dos erros auto-correlacionados em um modelo de caminhada aleatória foi reparado de duas formas diferentes: adicionando um valor atrasado da série diferenciada Para a equação ou adicionando um valor atrasado do erro de previsão. Qual abordagem é melhor Uma regra de ouro para esta situação, que será discutida com mais detalhes mais adiante, é que a autocorrelação positiva geralmente é melhor tratada adicionando um termo AR ao modelo e a autocorrelação negativa geralmente é melhor tratada adicionando um Termo MA. Nas séries temporais de negócios e econômicas, a autocorrelação negativa surge frequentemente como um artefato de diferenciação. (Em geral, a diferenciação reduz a autocorrelação positiva e pode até causar uma mudança de autocorrelação positiva para negativa). Assim, o modelo ARIMA (0,1,1), no qual a diferenciação é acompanhada por um termo MA, é mais usado do que um Modelo ARIMA (1,1,0). ARIMA (0,1,1) com alisamento exponencial constante e constante: ao implementar o modelo SES como modelo ARIMA, você realmente ganha alguma flexibilidade. Em primeiro lugar, o coeficiente estimado de MA (1) pode ser negativo. Isso corresponde a um fator de alisamento maior do que 1 em um modelo SES, que geralmente não é permitido pelo procedimento de montagem do modelo SES. Em segundo lugar, você tem a opção de incluir um termo constante no modelo ARIMA, se desejar, para estimar uma tendência média não-zero. O modelo ARIMA (0,1,1) com constante tem a equação de previsão: as previsões de um período anteriores deste modelo são qualitativamente similares às do modelo SES, exceto que a trajetória das previsões de longo prazo é tipicamente uma Linha inclinada (cuja inclinação é igual a mu) em vez de uma linha horizontal. ARIMA (0,2,1) ou (0,2,2) sem alisamento exponencial linear constante: modelos de alisamento exponencial linear são modelos ARIMA que utilizam duas diferenças não-sazonais em conjunto com os termos MA. A segunda diferença de uma série Y não é simplesmente a diferença entre Y e ela mesma atrasada por dois períodos, mas é a primeira diferença da primeira diferença - isto é. A mudança de mudança de Y no período t. Assim, a segunda diferença de Y no período t é igual a (Y t - Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. Uma segunda diferença de uma função discreta é análoga a uma segunda derivada de uma função contínua: mede a quotaccelerationquot ou quotcurvaturequot na função em um determinado ponto no tempo. O modelo ARIMA (0,2,2) sem constante prediz que a segunda diferença da série é igual a uma função linear dos dois últimos erros de previsão: o que pode ser rearranjado como: onde 952 1 e 952 2 são o MA (1) e MA (2) coeficientes. Este é um modelo de suavização exponencial linear geral. Essencialmente o mesmo que o modelo Holt8217s, e o modelo Brown8217s é um caso especial. Ele usa médias móveis exponencialmente ponderadas para estimar um nível local e uma tendência local na série. As previsões de longo prazo deste modelo convergem para uma linha reta cuja inclinação depende da tendência média observada no final da série. ARIMA (1,1,2) sem alisamento exponencial linear constante de tendência amortecida. Este modelo está ilustrado nos slides que acompanham os modelos ARIMA. Ele extrapola a tendência local no final da série, mas acha-se em horizontes de previsão mais longos para introduzir uma nota de conservadorismo, uma prática que tem suporte empírico. Veja o artigo em quotPor que a Tendência Damped funciona por Gardner e McKenzie e o artigo de QuotGolden Rulequot de Armstrong et al. para detalhes. Em geral, é aconselhável manter os modelos em que pelo menos um de p e q não é maior do que 1, ou seja, não tente se ajustar a um modelo como o ARIMA (2,1,2), pois isso provavelmente levará a uma superposição E quotcommon-factorquot questões que são discutidas em mais detalhes nas notas sobre a estrutura matemática dos modelos ARIMA. Implementação da planilha: os modelos ARIMA, como os descritos acima, são fáceis de implementar em uma planilha eletrônica. A equação de predição é simplesmente uma equação linear que se refere a valores passados ​​de séries temporais originais e valores passados ​​dos erros. Assim, você pode configurar uma planilha de previsão ARIMA armazenando os dados na coluna A, a fórmula de previsão na coluna B e os erros (dados menos previsões) na coluna C. A fórmula de previsão em uma célula típica na coluna B seria simplesmente Uma expressão linear que se refere a valores nas linhas precedentes das colunas A e C, multiplicadas pelos coeficientes AR ou MA apropriados armazenados em células em outro lugar na planilha.

No comments:

Post a Comment